

NUCLEAR SAFETY RESEARCH INSTITUTE

PSA on Extreme Weather Phenomena for NPP Paks

Tamás Siklóssy

siklossyt@nubiki.hu

WGRISK Technical Discussion on PSA Related to Weather-Induced Hazards

Paris, 9 March, 2017

Background

- Level 1 Seismic PSA for Paks NPP 2002
- Periodic Safety Review 2009
 - PSA for external hazards other than earthquake
- Hungarian nuclear safety regulations (for existing units):
 - design basis for natural hazards: 10⁻⁴/a freq.
 - risk assessment for external hazards beyond the design basis, at least 10⁻⁷÷10⁻⁴/a freq.
 - PSA screening criteria for external hazards: 10⁻⁷/a
- High importance of risk assessment for external hazards after Fukushima and Targeted Safety Reassessment

Level 1 External Events PSA for Paks NPP – 2012 Follow-on analyses – 2013-2018

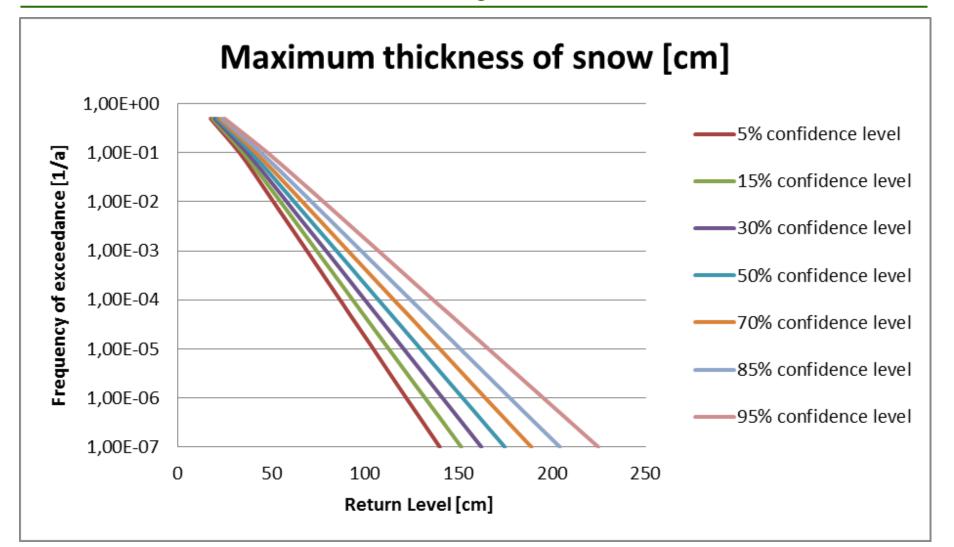
Objectives

Overall objectives:

- Quantify (to the extent feasible) the level of risk induced by natural & man-made external hazards
- Identify the main risk contributors
- Analyze accidents in full power and in LPSD states Further objectives of the original assessment (till 2012):
- Identify analysis areas to be further dealt with:
 - unresolved issues and necessary follow-on analyses
- Identify apparently important safety concerns Further objectives of the follow-on analyses (since 2013):
- Develop a full scope external events PSA
- Reduce uncertainties and conservatism

Major Analysis Steps

- 1. Selection of external hazards
- 2. Screening of external hazards
- 3. Detailed analysis of screened-in external hazards:
 - hazard assessment (strength-frequency correlation)
 - plant response analysis (failure probability of SSCs for different levels of load)
 - development and quantification of plant risk model
 - identification of event sequences leading to CD
 - CDF quantification
 - uncertainty and sensitivity analyses


External Hazards Subject to Detailed Analysis

Screened-in (natural and human induced) external hazards:

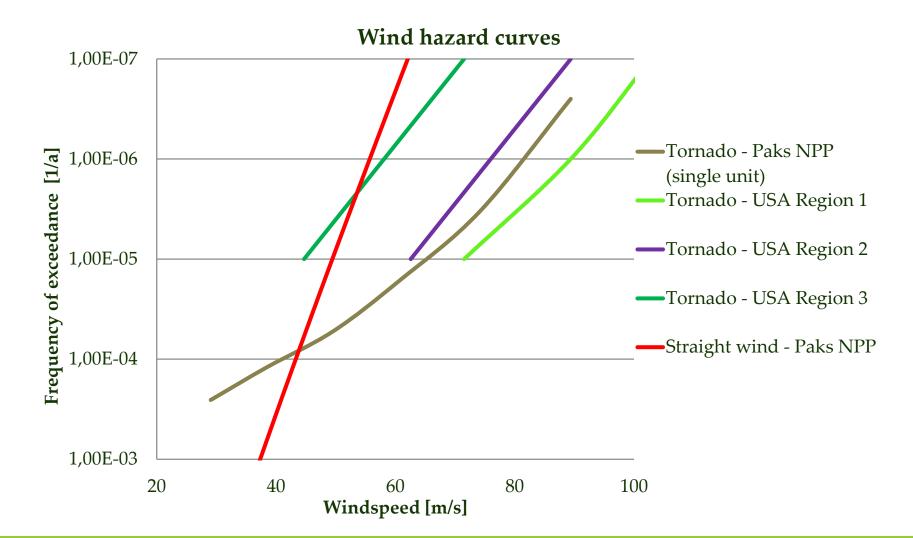
- earthquake (not subject of this analysis)
- extreme wind
- extreme rainfall
- extreme snow
- extremely high and low air temperature
- extreme frost and ice formation
- lightning
- tornado
- blockage of water intake filters (not a weather-induced hazard)

Hazard Assessment – Extreme Value Theory

NUBIK

Hazard Assessment – Individual Approaches

Lightning:

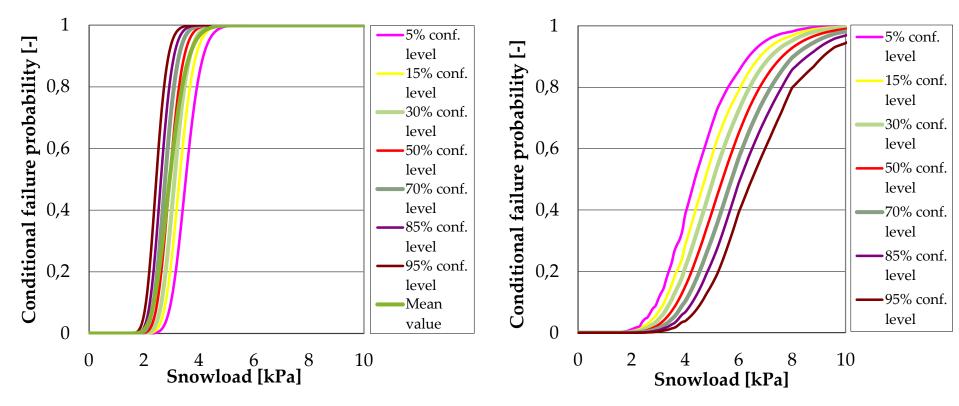

- several relevant physical properties of lightning
- not necessarily the most extreme ones are the most hazardous ones
- lighting strike frequency (5/km²/a) & conditional failure probability of SSCs (based on lightning protection standard)

Tornado:

- review of the tornado hazard assessment in FSR
- applied methodology based on NUREG/CR-4461 (Tornado Climatology of the Contiguous United States)
- input data assessment: national or general (e.g. NUREG)
- quantification: point estimate, sensitivity & uncertainty studies

Hazard Assessment – Tornado and Straight Wind

Plant Response and Fragility Analysis


Wind & snow – structures and outdoor facilities

Frost/glaze ice – power transmission lines

- Till 2012: methodology development to establish fragility curves based on:
 - design data
 - safety margins ensured by relevant standards
 - structural re-analysis of safety related buildings
- Since 2013: review of the methodology and the fragility characteristics of all safety related buildings
 - refined methodology based on structural reliability analysis
 - higher level model for critical structural elements
 - empirical fragility curves (not in a closed mathematical form)

 $P_{f} = 4,47 \cdot 10^{-5}$

 $P_{f} = 5,39 \cdot 10^{-6}$

Snow fragility curves for the reactor hall

Plant Response and Fragility Analysis

PSA on Extreme Weather Phenomena for NPP Paks

Plant Response and Fragility Analysis

Beyond fragility curves for wind, snow and frost:

- Snow blockage of air intake systems / inlets
- Rain canalization system (hydraulic load assessment)
- Lightning lightning protection system (adequacy to the applicable standards and evaluation of system-effectiveness)
- High and low temperatures all safety related components (temperature resistance vs. expected air temperature at the location of the component), fragility of off-site power
- Tornado structures and outdoor facilities (ongoing) Expert panel to help plant response analysis

PSA Model Development

Wind-, Snow-, Frost-PSA models utilizing PSA models for internal events and seismic hazards

- Initiating event (EH) initiating failures and additional SSC failures
- Mitigation of multiple transient initiating failures: the union of the safety functions for single transient initiating failures
- Generic event tree for every POS event tree headers:
 - potential hazard induced transients (lower branch: occurrence of the given transient initiating failure)
 - combination of all core damage event sequences from all the single transient initiating failures that may occur (setting the boundary conditions sets on each event sequence)

Risk Quantification

- Data assessment: family of continuous hazard and fragility curves and random equipment failures
- MCSs det.: Risk Spectrum; freq. calc.: stand-alone code
- Occurrence frequency of a minimal cutset (MCS): $f(MCS) = FP(NEBE_1) \cdot \dots \cdot FP(NEBE_{NE}) \cdot \sum_{i=1}^{160} (FF_i(EBE_1) \cdot \dots \cdot FF_i(EBE_E) \cdot h_i)$
- The conditional probability of core damage in relation to a minimal cutset: $CCDP(MCS) = \frac{f(MCS)}{\sum_{i=1}^{160} h_i}$
- The CDF induced by an external hazard:

$$CDF = \left(1 - \prod_{n=1}^{N_{MCS}} \left(1 - CCDP(MCS_n)\right)\right) \cdot \sum_{i=1}^{160} \mathbf{h}_i$$

Interpretation of Results

- Point estimates
 - CDF and CDP for every hazard in each POS
 - cumulative plant risk (annual CDP) by hazards
- Dominant MCS to plant risk (identify and interpret)
- Importance & sensitivity analyses fragility groups:
 - FC, RDF
 - S_{U/L} assuming a higher and a lower value of HCLPF for the group (one order of magnitude change in the hazard occurrence frequency)
 - risk reduction if the HCLPF is at least the design basis
- Uncertainty analysis Monte Carlo Simulation (hazard & fragility curves and random failures)

Findings – Core Damage Risk

- Risk induced by extreme rainfall and lightning was found insignificant
- No solid assessment for extremely high and low air temperature due to uncertainties in:
 - operational strategy under harsh weather conditions
 - hazard assessment
 - temperature related fragility assessment
- Risk assessment for tornado is still ongoing (till the end of 2018)
- Annual CDP induced by wind, snow and frost:
 - 1,24.10⁻⁵ from extreme wind
 - 5,20.10⁻⁶ from extreme snow
 - 2,78·10⁻⁶ from extreme frost

Results are relevant to the basic assessment. Re-quantification in light of the results of follow-on analyses is expected by the end of 2018.

Findings – Unresolved Issues (1/2)

Follow-on analyses & corrective actions proposed to:

- screen out hazards considered negligible from risk point of view (e.g. lightning, extreme rainfall)
- enable risk assessment for hazards not characterized quantitatively yet (e.g. temperature)
- reduce uncertainties and conservatism for hazards already quantified (wind, snow, frost)

Set-up a detailed operational and transient mitigation strategy to follow in case of extreme meteorological conditions

Findings – Unresolved Issues (2/2)

- Wind: enhance the reliability of establishing plant operation in island-mode
- Snow: modify procedure on snow removal from the roofs
- Rain: hydraulic load reassessment on the canalization system
- Lightning: review of risk figures on I&C components
- Tornado: plant response and fragility assessment, development and quantification of plant risk model
- High and low air temperatures
 - effectiveness and reliability of the plant HVAC systems
 - freezing of fluids in safety related pipes
 - failure of bearings due to not sufficient cooling
 - safe stable plant conditions in case of LOOP etc.

Conclusions

- External events PSA for the Paks NPP 2012
 + follow on analyses (2013-2018)
- Core damage risk induced by external hazards was quantified to the extent seen feasible:
 - wind, frost, snow point estimate, sensitivity, importance and uncertainty analyses
 - extreme rainfall and lightning insignificant
 - tornado, extreme temperatures no PSA model developed yet
- Unresolved issues and necessary follow-on analyses were identified and proposed (2012)
- At present follow-on analyses are on-going according to the action plan developed earlier

Thank you for your kind attention!